Number System Aptitude Questions and Answers:


Overview:


Questions and Answers Type:MCQ (Multiple Choice Questions).
Main Topic:Quantitative Aptitude.
Quantitative Aptitude Sub-topic:Number System Aptitude Questions and Answers.
Number of Questions:10 Questions with Solutions.

  1. Find the cube root of the number \(13824\)?

    1. \(23\)
    2. \(24\)
    3. \(27\)
    4. \(26\)


Answer: (b) \(24\)

Solution: Cube root of the number \(13824\),$$ \sqrt[3]{13824} = \sqrt[3]{24 \times 24 \times 24} $$ $$ = (24)^{3 \times \frac{1}{3}} = 24 $$

  1. What will come in place of question mark \((?)\) for the given expression \(4^{?} = 64 \times 64 \times 64\)?

    1. \(4\)
    2. \(8\)
    3. \(9\)
    4. \(5\)


Answer: (c) \(9\)

Solution: Given expression $$ 4^{?} = 64 \times 64 \times 64 $$ $$ 4^{?} = (4)^3 \times (4)^3 \times (4)^3 $$ $$ 4^{?} = 4^{3 + 3 + 3} $$ $$ 4^{?} = 4^9 $$ $$ ? = 9 $$

  1. Solve the expression \((11)^2 \times (11)^{108} \div (11)^{107}\)?

    1. \(1331\)
    2. \(1333\)
    3. \(1330\)
    4. \(1311\)


Answer: (a) \(1331\)

Solution: Given expression, $$(11)^2 \times (11)^{108} \div (11)^{107}$$ $$ = (11)^2 \times (11)^{108 - 107} $$ $$ = (11)^2 \times (11)^1 = (11)^{2 + 1} = (11)^3 = 1331 $$

  1. Find the square root of the number \(4225\)?

    1. \(54\)
    2. \(65\)
    3. \(67\)
    4. \(58\)


Answer: (b) \(65\)

Solution: Square root of the number,$$ \sqrt[2]{4225} $$ $$= \sqrt[2]{65 \times 65} = 65 $$

  1. Solve the expression \(64 + [{4 \times 5 (3 + 2)}]\)?

    1. \(165\)
    2. \(164\)
    3. \(163\)
    4. \(161\)


Answer: (b) \(164\)

Solution: Given expression, $$ 64 + [{4 \times 5 (3 + 2)}] $$ $$ 64 + [{4 \times 5 \times 5}] $$ $$ 64 + [100] = 164 $$

  1. Find the remainder of the expression \(\frac{35 \times 45}{8}\)?

    1. \(6\)
    2. \(5\)
    3. \(1\)
    4. \(7\)


Answer: (d) \(7\)

Solution: According to basic remainder theorem,$$\frac{35 \times 45}{8}$$ $$= \frac{3 \times 5}{20} = \frac{15}{8} = 7 \ (Remainder)$$

  1. Find the factors of the number \(150\)?

    1. \(10\)
    2. \(14\)
    3. \(12\)
    4. \(16\)


Answer: (c) \(12\)

Solution: $$ 150 = 2 \times 3 \times 5 \times 5 $$ $$= 2^1 \times 3^1 \times 5^2$$ then factors of composite number $$= (1 + 1)(1 + 1)(2 + 1)$$ $$= 2 \times 2 \times 3 = 12 $$

  1. Solve the given expression \((7)^{11} \div (7)^{10}\)?

    1. \(5\)
    2. \(8\)
    3. \(7\)
    4. \(2\)


Answer: (c) \(7\)

Solution: Given expression,$$ (7)^{11} \div (7)^{10} $$ $$= (7)^{11 - 10} = (7)^1 = 7 $$

  1. What will come in the place of question mark \((?)\) for the given expression \(7^{?} = 49 \times 343 \times 2401 \div 343\)?

    1. \(2\)
    2. \(4\)
    3. \(6\)
    4. \(8\)


Answer: (c) \(6\)

Solution: Given expression $$ 7^{?} = 49 \times 343 \times 2401 \div 343 $$ $$ 7^{?} = (7)^2 \times (7)^3 \times (7)^4 \div (7)^3 $$ $$ 7^{?} = (7)^{2 + 3 + 4 - 3} $$ $$ 7^{?} = 7^6 $$ $$ ? = 6 $$

  1. Solve the given expression \((4 + 5 \times 2) \times {16 \div 2 (5 - 1)}\)?

    1. \(25\)
    2. \(20\)
    3. \(28\)
    4. \(21\)


Answer: (c) \(28\)

Solution: Given expression,$$ (4 + 5 \times 2) \times {16 \div 2 (5 - 1)} $$ $$ = 14 \times {16 \div 8} = 14 \times 2 = 28 $$