# Number System Aptitude Questions and Answers:

#### Overview:

 Questions and Answers Type: MCQ (Multiple Choice Questions). Main Topic: Quantitative Aptitude. Quantitative Aptitude Sub-topic: Number System Aptitude Questions and Answers. Number of Questions: 10 Questions with Solutions.

1. Find the cube root of the number $$13824$$?

1. $$23$$
2. $$24$$
3. $$27$$
4. $$26$$

Answer: (b) $$24$$

Solution: Cube root of the number $$13824$$,$$\sqrt[3]{13824} = \sqrt[3]{24 \times 24 \times 24}$$ $$= (24)^{3 \times \frac{1}{3}} = 24$$

1. What will come in place of question mark $$(?)$$ for the given expression $$4^{?} = 64 \times 64 \times 64$$?

1. $$4$$
2. $$8$$
3. $$9$$
4. $$5$$

Answer: (c) $$9$$

Solution: Given expression $$4^{?} = 64 \times 64 \times 64$$ $$4^{?} = (4)^3 \times (4)^3 \times (4)^3$$ $$4^{?} = 4^{3 + 3 + 3}$$ $$4^{?} = 4^9$$ $$? = 9$$

1. Solve the expression $$(11)^2 \times (11)^{108} \div (11)^{107}$$?

1. $$1331$$
2. $$1333$$
3. $$1330$$
4. $$1311$$

Answer: (a) $$1331$$

Solution: Given expression, $$(11)^2 \times (11)^{108} \div (11)^{107}$$ $$= (11)^2 \times (11)^{108 - 107}$$ $$= (11)^2 \times (11)^1 = (11)^{2 + 1} = (11)^3 = 1331$$

1. Find the square root of the number $$4225$$?

1. $$54$$
2. $$65$$
3. $$67$$
4. $$58$$

Answer: (b) $$65$$

Solution: Square root of the number,$$\sqrt[2]{4225}$$ $$= \sqrt[2]{65 \times 65} = 65$$

1. Solve the expression $$64 + [{4 \times 5 (3 + 2)}]$$?

1. $$165$$
2. $$164$$
3. $$163$$
4. $$161$$

Answer: (b) $$164$$

Solution: Given expression, $$64 + [{4 \times 5 (3 + 2)}]$$ $$64 + [{4 \times 5 \times 5}]$$ $$64 + [100] = 164$$

1. Find the remainder of the expression $$\frac{35 \times 45}{8}$$?

1. $$6$$
2. $$5$$
3. $$1$$
4. $$7$$

Answer: (d) $$7$$

Solution: According to basic remainder theorem,$$\frac{35 \times 45}{8}$$ $$= \frac{3 \times 5}{20} = \frac{15}{8} = 7 \ (Remainder)$$

1. Find the factors of the number $$150$$?

1. $$10$$
2. $$14$$
3. $$12$$
4. $$16$$

Answer: (c) $$12$$

Solution: $$150 = 2 \times 3 \times 5 \times 5$$ $$= 2^1 \times 3^1 \times 5^2$$ then factors of composite number $$= (1 + 1)(1 + 1)(2 + 1)$$ $$= 2 \times 2 \times 3 = 12$$

1. Solve the given expression $$(7)^{11} \div (7)^{10}$$?

1. $$5$$
2. $$8$$
3. $$7$$
4. $$2$$

Answer: (c) $$7$$

Solution: Given expression,$$(7)^{11} \div (7)^{10}$$ $$= (7)^{11 - 10} = (7)^1 = 7$$

1. What will come in the place of question mark $$(?)$$ for the given expression $$7^{?} = 49 \times 343 \times 2401 \div 343$$?

1. $$2$$
2. $$4$$
3. $$6$$
4. $$8$$

Answer: (c) $$6$$

Solution: Given expression $$7^{?} = 49 \times 343 \times 2401 \div 343$$ $$7^{?} = (7)^2 \times (7)^3 \times (7)^4 \div (7)^3$$ $$7^{?} = (7)^{2 + 3 + 4 - 3}$$ $$7^{?} = 7^6$$ $$? = 6$$

1. Solve the given expression $$(4 + 5 \times 2) \times {16 \div 2 (5 - 1)}$$?

1. $$25$$
2. $$20$$
3. $$28$$
4. $$21$$

Answer: (c) $$28$$

Solution: Given expression,$$(4 + 5 \times 2) \times {16 \div 2 (5 - 1)}$$ $$= 14 \times {16 \div 8} = 14 \times 2 = 28$$