# Simplification Aptitude Questions and Answers:

#### Overview:

 Questions and Answers Type: MCQ (Multiple Choice Questions). Main Topic: Quantitative Aptitude. Quantitative Aptitude Sub-topic: Simplification Aptitude Questions and Answers. Number of Questions: 10 Questions with Solutions.

Directions: What Approximate value will come in place of question mark $$?$$ in the following questions?

1. $$3^?$$ = 27.05 $$\div$$ 145.02 $$\times$$ 1304.95 $$\div$$ 8.99

1. 1
2. 2
3. 3
4. 4

Solution: $$3^? = 27.05 \div 145.02 \times 1304.95 \div 8.99$$ $$3^? = 27 \div 145 \times 1305 \div 9$$ $$3^? = \frac{27}{145} \times \frac{1305}{9}$$ $$3^? = 27$$ $$3^? = 3^3$$ $$? \approx 3$$

1. $$\frac{559.99}{?} = \sqrt{168.97} + \sqrt{48.95}$$

1. 28
2. 32
3. 38
4. 42

Solution: $$\frac{559.99}{?} = \sqrt{168.97} + \sqrt{48.95}$$ $$\frac{560}{?} = \sqrt{169} + \sqrt{49}$$ $$\frac{560}{?} = 13 + 7$$ $$\frac{560}{20} = ?$$ $$28 \approx ?$$

1. 24.79% of 440.02 $$\div$$ ? = 336.23 $$\div \sqrt{143.87}$$

1. 1
2. 2
3. 3
4. 4

Solution: 25% of 440 $$\div$$ ? = 336 $$\div \sqrt{144}$$ $$\frac{25 \times 440}{100} \div ? = \frac{336}{12}$$ $$? = \frac{110}{28} = 3.92$$ $$? \approx 4$$

1. $$(? \div 15.78) \times 15.05$$ = 10.01% of 1220.06

1. 105
2. 110
3. 123
4. 130

Solution: $$(? \div 16) \times 15 = 10 \ \% \ of 1220$$ $$\frac{?}{16} \times 15 = \frac{10 \times 1220}{100}$$ $$? \approx 130$$

1. ?% of 119.92 = $$\sqrt{(12.2)^2 + (8)^2 + 19.2 \ \% \ of \ 1000}$$

1. 12
2. 17
3. 21
4. 27

Solution: ?% of 120 = $$\sqrt{(12)^2 + (8)^2 + 19 \ \% \ of \ 1000}$$ $$\frac{? \times 120}{100} = \sqrt{144 + 64 + 190}$$ $$\frac{? \times 120}{100} = \sqrt{398}$$ $$\frac{? \times 120}{100} = 20$$ $$? = \frac{20 \times 100}{120}$$ $$? \approx 17$$

1. ?% of (120.02 $$\times$$ 5.87 - 249.92) = 440.21

1. 94
2. 87
3. 81
4. 76

Solution: $$? \ \% \ of \ (120 \times 6 - 250) = 440$$ $$? \ \% \ of \ (720 - 250) = 440$$ $$? \ \% \ of \ 470 = 440$$ $$\frac{? \times 470}{100} = 440$$ $$? = \frac{440 \times 100}{470}$$ $$? \approx 94$$

1. $$\sqrt{125.01 \times 3.03 + 250}$$ = 3.02 + $$\sqrt{?}$$

1. 498
2. 484
3. 478
4. 768

Solution: $$\sqrt{125 \times 3 + 250} = 3 + \sqrt{?}$$ $$\sqrt{625} = 3 + \sqrt{?}$$ $$25 = 3 + \sqrt{?}$$ $$22 = \sqrt{?}$$ $$(22)^2 = ?$$ $$484 \approx ?$$

1. $$\frac{(0.8)^3 - (0.4)^3}{(0.8)^3 + (0.4)^3} = ?$$

1. $$\frac{7}{5}$$
2. $$\frac{7}{9}$$
3. $$\frac{9}{7}$$
4. $$\frac{5}{7}$$

Answer: (b) $$\frac{7}{9}$$

Solution: $$= \frac{0.512 - 0.064}{0.512 + 0.064}$$ $$= \frac{0.448}{0.576} = \frac{7}{9}$$

1. $$\frac{?^{0.4}}{81} = \frac{256}{?^{3.6}}$$

1. 12
2. 15
3. 16
4. 18

Solution: $$\frac{?^{0.4}}{81} = \frac{256}{?^{3.6}}$$ $$?^{0.4} \times ?^{3.6} = 81 \times 256$$ $$?^{4} = 3^4 \times 4^4$$ $$? = 3 \times 4 = 12$$

1. $$3 \frac{4}{5} \times 2 \frac{5}{7} + 4 \frac{7}{5} = ?$$

1. 12
2. 14
3. 16
4. 20

Solution: $$= 3 \frac{4}{5} \times 2 \frac{5}{7} + 4 \frac{7}{5}$$ $$= \frac{19}{5} \times \frac{19}{7} + \frac{19}{5}$$ $$= \frac{361}{35} + \frac{19}{5}$$ $$= \frac{494}{35} = 14.11$$ $$\approx 14$$