Simplification Aptitude Questions and Answers:


Overview:


Questions and Answers Type:MCQ (Multiple Choice Questions).
Main Topic:Quantitative Aptitude.
Quantitative Aptitude Sub-topic:Simplification Aptitude Questions and Answers.
Number of Questions:10 Questions with Solutions.

Directions: What will come in place of question mark \(?\) in the following questions?


  1. 28% of 345 - 18% of 355 + 21% of 225 = ?

    1. 56.65
    2. 68.65
    3. 79.95
    4. 82.35


Answer: (c) 79.95

Solution: 28% of 345, $$ = \frac{28 \times 345}{100} = 96.6 $$ 18% of 355, $$ = \frac{18 \times 355}{100} = 63.9 $$ 21% of 225, $$ = \frac{21 \times 225}{100} = 47.25 $$ $$ = 96.6 - 63.9 + 47.25 $$ $$ = 79.95 $$

  1. \(\frac{4}{7} \ of \ \frac{3}{8} \ of \ \frac{6}{7} \ of \ 1550 = ?\)

    1. 284.69
    2. 244.36
    3. 235.12
    4. 236.32


Answer: (a) 284.69

Solution: $$ = \frac{4 \times 3 \times 6 \times 1550}{7 \times 8 \times 7} $$ $$ = 284.69 $$

  1. \((5)^{110} \div (5)^{107} = ?\)

    1. 64
    2. 125
    3. 216
    4. 343


Answer: (b) 125

Solution: $$ = (5)^{110} \div (5)^{107} $$ $$ = (5)^{110 - 107} $$ $$ = (5)^3 = 125 $$

  1. \(\left(\frac{1}{125}\right)^{- \frac{4}{3}} \div \left(\frac{1}{64}\right)^{- \frac{1}{3}} = ?\)

    1. 122.25
    2. 136.58
    3. 142.25
    4. 156.25


Answer: (d) 156.25

Solution: $$ = \left(\frac{1}{125}\right)^{- \frac{4}{3}} \div \left(\frac{1}{64}\right)^{- \frac{1}{3}} $$ $$ = (125)^{\frac{4}{3}} \div (64)^{\frac{1}{3}} $$ $$ = (5)^{3 \times \frac{4}{3}} \div (4)^{3 \times \frac{1}{3}} $$ $$ = (5)^4 \div (4)^1 $$ $$ = 625 \div 4 $$ $$ = 156.25 $$

  1. \(3 \sqrt{3} \times 3^4 \div (3)^{\frac{5}{2}} = (3)^{3 + ?}\)

    1. 0
    2. 1
    3. 2
    4. 3


Answer: (a) 0

Solution: $$ 3 \sqrt{3} \times 3^4 \div (3)^{\frac{5}{2}} = (3)^{3 + ?} $$ $$ 3 \times (3)^{\frac{1}{2}} \times 3^4 \times (3)^{- \frac{5}{2}} = (3)^{3 + ?} $$ $$ (3)^{1 + \frac{1}{2} + 4 - \frac{5}{2}} = (3)^{3 + ?} $$ $$ (3)^3 = (3)^{3 + ?} $$ $$ 3 = 3 + ? $$ $$ ? = 0 $$

  1. \(\{5 \times (221 + 25 - 111)\} = ?\)

    1. 575
    2. 625
    3. 650
    4. 675


Answer: (d) 675

Solution: $$ = \{5 \times (221 + 25 - 111)\} $$ $$ = \{5 \times 135\} = 675 $$

  1. \(4250 \div \sqrt{529} + 225 = ?\)

    1. 409.78
    2. 405.56
    3. 403.25
    4. 401.46


Answer: (a) 409.78

Solution: $$ = 4250 \div \sqrt{529} + 225 $$ $$ = 4250 \div 23 + 225 $$ $$ = 184.78 + 225 $$ $$ = 409.78 $$

  1. \(\left[\{(5)^3 \times (6)^3 - (4)^3 \} \div (7)^2\right] = ?\)

    1. 523.7
    2. 525.6
    3. 549.7
    4. 552.9


Answer: (c) 549.7

Solution: $$ = \left[\{(5)^3 \times (6)^3 - (4)^3 \} \div (7)^2\right] $$ $$ = \left[\{125 \times 216 - 64 \} \div 49\right] $$ $$ = \left[26936 \div 49\right] $$ $$ = 549.7 $$

  1. \(225 \div 5 + 150 \div 3 = ?\)

    1. 75
    2. 85
    3. 95
    4. 98


Answer: (c) 95

Solution: $$ = 225 \div 5 + 150 \div 3 $$ $$ = 45 + 50 = 95 $$

  1. \((30)^{2} \div \sqrt{?} + 220 = 520\)

    1. 6
    2. 9
    3. 12
    4. 15


Answer: (b) 9

Solution: $$ (30)^{2} \div \sqrt{?} + 220 = 520 $$ $$ (30)^{2} \div \sqrt{?} = 220 $$ $$ \sqrt{?} = \frac{900}{300} $$ $$ \sqrt{?} = 3 $$ $$ ? = 3^2 $$ $$ ? = 9 $$