Questions and Answers Type: | MCQ (Multiple Choice Questions). |

Main Topic: | Quantitative Aptitude. |

Quantitative Aptitude Sub-topic: | Profit and Loss Aptitude Questions and Answers. |

Number of Questions: | 10 Questions with Solutions. |

- A man purchased a handwatch at \(Rs.3000\) and sold it at \(Rs.3200\). Find the profit percent of the man?
- \(5.57 \ \%\)
- \(6.67 \ \%\)
- \(5.25 \ \%\)
- \(3.67 \ \%\)

Answer: (b) \(6.67 \ \%\)

Solution: Given, cost price (CP) = \(Rs.3000\)

selling price (SP) = \(Rs.3200\), then $$ Profit = SP - CP $$ $$ = 3200 - 3000 = 200 $$ now the profit percent, $$ P \ \% = \frac{200}{3000} \times 100 $$ $$ = 6.67 \ \% $$

Solution: Given, cost price (CP) = \(Rs.3000\)

selling price (SP) = \(Rs.3200\), then $$ Profit = SP - CP $$ $$ = 3200 - 3000 = 200 $$ now the profit percent, $$ P \ \% = \frac{200}{3000} \times 100 $$ $$ = 6.67 \ \% $$

- Rahul purchased a mobile at \(Rs.10000\) and sold it at \(Rs.8000\). Find the loss percent of the Rahul?
- \(20 \ \%\)
- \(15 \ \%\)
- \(25 \ \%\)
- \(30 \ \%\)

Answer: (a) \(20 \ \%\)

Solution: Given, cost price (CP) = \(Rs.10000\)

selling price (SP) = \(RS.8000\), then $$ Loss = CP - SP $$ $$ = 10000 - 8000 = 2000 $$ now the loss percent, $$ Loss \ \% = \frac{2000}{10000} \times 100 $$ $$ = 20 \ \% $$

Solution: Given, cost price (CP) = \(Rs.10000\)

selling price (SP) = \(RS.8000\), then $$ Loss = CP - SP $$ $$ = 10000 - 8000 = 2000 $$ now the loss percent, $$ Loss \ \% = \frac{2000}{10000} \times 100 $$ $$ = 20 \ \% $$

- A women sold an article for \(Rs.3000\) and gained \(Rs.400\), then find the cost price of the article?
- \(Rs.3200\)
- \(Rs.3400\)
- \(Rs.2800\)
- \(Rs.2600\)

Answer: (d) \(Rs.2600\)

Solution: Given, selling price (SP) = \(Rs.3000\)

profit = \(Rs.400\), then $$ Profit = SP - CP $$ $$ 400 = 3000 - CP $$ $$ CP = Rs.2600 $$

Solution: Given, selling price (SP) = \(Rs.3000\)

profit = \(Rs.400\), then $$ Profit = SP - CP $$ $$ 400 = 3000 - CP $$ $$ CP = Rs.2600 $$

- A man sold an article for \(Rs.8000\) and lost \(Rs.1500\), then find the cost price of the article?
- \(Rs.9500\)
- \(Rs.8500\)
- \(Rs.6500\)
- \(Rs.7500\)

Answer: (a) \(Rs.9500\)

Solution: Given, selling price (SP) = \(Rs.8000\)

loss = \(Rs.1500\), then $$ Loss = CP - SP $$ $$ 1500 = CP - 8000 $$ $$ CP = Rs.9500 $$

Solution: Given, selling price (SP) = \(Rs.8000\)

loss = \(Rs.1500\), then $$ Loss = CP - SP $$ $$ 1500 = CP - 8000 $$ $$ CP = Rs.9500 $$

- Rohan purchased a book at \(Rs.200\) and sold at the profit of \(Rs.50\), then find the selling price of the book and profit percent of the Rohan?
- \(15 \ \%\)
- \(20 \ \%\)
- \(25 \ \%\)
- \(30 \ \%\)

Answer: (c) \(25 \ \%\)

Solution: Given, cost price (CP) = \(Rs.200\)

profit = \(Rs.50\), then $$ Profit = SP - CP $$ $$ 50 = SP - 200 $$ $$ SP = Rs.250 $$ $$ Profit \ \% = \frac{50}{200} \times 100 $$ $$ = 25 \ \% $$

Solution: Given, cost price (CP) = \(Rs.200\)

profit = \(Rs.50\), then $$ Profit = SP - CP $$ $$ 50 = SP - 200 $$ $$ SP = Rs.250 $$ $$ Profit \ \% = \frac{50}{200} \times 100 $$ $$ = 25 \ \% $$

- By selling a book for \(Rs.500\), the seller gains \(10 \ \%\), at what price should he sell the book to gain \(20 \ \%\) on the cost price?
- \(Rs.540.223\)
- \(Rs.545.445\)
- \(Rs.632.335\)
- \(Rs.626.662\)

Answer: (b) \(Rs.545.445\)

Solution: Given, selling price (SP) = \(Rs.500\)

profit percent = \(10 \ \%\), then $$ SP = \frac{100 + P \ \%}{100} \times CP $$ $$ CP = \frac{500}{100 + 10} \times 100 $$ $$ = \frac{500}{110} \times 100 $$ $$ = Rs.454.54 $$ \(20 \ \%\) of the cost price, $$ = \frac{454.54 \times 20}{100} $$ $$ = Rs.90.908 $$ Hence, to gain \(20 \ \%\) the book should be sold at Rs. $$ = 454.54 + 90.908 $$ $$ = Rs.545.445 $$

Solution: Given, selling price (SP) = \(Rs.500\)

profit percent = \(10 \ \%\), then $$ SP = \frac{100 + P \ \%}{100} \times CP $$ $$ CP = \frac{500}{100 + 10} \times 100 $$ $$ = \frac{500}{110} \times 100 $$ $$ = Rs.454.54 $$ \(20 \ \%\) of the cost price, $$ = \frac{454.54 \times 20}{100} $$ $$ = Rs.90.908 $$ Hence, to gain \(20 \ \%\) the book should be sold at Rs. $$ = 454.54 + 90.908 $$ $$ = Rs.545.445 $$

- By selling a pen for \(Rs.50\), a man gains \(5 \ \%\). Find the cost price of the pen?
- \(Rs.47.61\)
- \(Rs.45.26\)
- \(Rs.42.58\)
- \(Rs.44.81\)

Answer: (a) \(Rs.47.61\)

Solution: Given, selling price (SP) = \(Rs.50\)

profit percent = =\(5 \ \%\), then $$ SP = \frac{100 + P \ \%}{100} \times CP $$ $$ CP = \frac{SP}{100 + P \ \%} \times 100 $$ $$ = \frac{50}{100 + 5} \times 100 $$ $$ CP = Rs.47.61 $$

Solution: Given, selling price (SP) = \(Rs.50\)

profit percent = =\(5 \ \%\), then $$ SP = \frac{100 + P \ \%}{100} \times CP $$ $$ CP = \frac{SP}{100 + P \ \%} \times 100 $$ $$ = \frac{50}{100 + 5} \times 100 $$ $$ CP = Rs.47.61 $$

- By selling a watch for \(Rs.1000\), a shopkeeper incurs a loss of \(20 \ \%\). Find the cost price of the watch?
- \(Rs.1525\)
- \(Rs.1600\)
- \(Rs.1250\)
- \(Rs.1350\)

Answer: (c) \(Rs.1250\)

Solution: Given, selling price (SP) = \(Rs.1000\)

loss percent = =\(20 \ \%\), then $$ SP = \frac{100 - L \ \%}{100} \times CP $$ $$ CP = \frac{SP}{100 - L \ \%} \times 100 $$ $$ = \frac{1000}{100 - 20} \times 100 $$ $$ CP = Rs.1250 $$

Solution: Given, selling price (SP) = \(Rs.1000\)

loss percent = =\(20 \ \%\), then $$ SP = \frac{100 - L \ \%}{100} \times CP $$ $$ CP = \frac{SP}{100 - L \ \%} \times 100 $$ $$ = \frac{1000}{100 - 20} \times 100 $$ $$ CP = Rs.1250 $$

- A man purchased a book for \(Rs.600\) and sold it at \(Rs.650\). Find the profit percent of the man?
- \(7.25 \ \%\)
- \(5.62 \ \%\)
- \(6.34 \ \%\)
- \(8.33 \ \%\)

Answer: (d) \(8.33 \ \%\)

Solution: Given, cost price (CP) = \(Rs.600\)

selling price (SP) = \(Rs.650\), then $$ CP = \frac{SP}{100 + P \ \%} \times 100 $$ $$ 600 = \frac{650}{100 + P \ \%} \times 100 $$ $$ P \ \% = 8.33 \ \% $$

Solution: Given, cost price (CP) = \(Rs.600\)

selling price (SP) = \(Rs.650\), then $$ CP = \frac{SP}{100 + P \ \%} \times 100 $$ $$ 600 = \frac{650}{100 + P \ \%} \times 100 $$ $$ P \ \% = 8.33 \ \% $$

- Rohit purchased a mobile at \(Rs.7000\) and sold it at \(Rs.6500\). Find the loss percent of the Rohit?
- \(6.16 \ \%\)
- \(8.28 \ \%\)
- \(7.14 \ \%\)
- \(5.69 \ \%\)

Answer: (c) \(7.14 \ \%\)

Solution: Given, cost price (CP) = \(Rs.7000\)

selling price (SP) = \(Rs.6500\), then $$ CP = \frac{SP}{100 - L \ \%} \times 100 $$ $$ 7000 = \frac{6500}{100 - L \ \%} \times 100 $$ $$ L \ \% = 7.14 \ \% $$

Solution: Given, cost price (CP) = \(Rs.7000\)

selling price (SP) = \(Rs.6500\), then $$ CP = \frac{SP}{100 - L \ \%} \times 100 $$ $$ 7000 = \frac{6500}{100 - L \ \%} \times 100 $$ $$ L \ \% = 7.14 \ \% $$

Lec 1: Introduction
Exercise-1
Lec 2: Profit and Loss Case-1
Exercise-2
Lec 3: Profit and Loss Case-2
Exercise-3
Lec 4: Profit and Loss Case-3
Exercise-4
Lec 5: Case of Discount
Exercise-5